Problems:
 Powerful LMs produce impersonal outputs.
* Finetuning big LMs is too expensive at scale. Even LoRA!

Opportunity: People have personal preferences that can be
learnt from!

Our Solution: LLM Personalization via lexicalized rules:

 Train a small, local model on personalization rules.

* Use it to guide foundational models in tasks, aligning with
user preferences.

Empirical Examples

Write an email to Sylvia informing her that the NG contract is
complete and ready for legal review, and that it should be available
by tomorrow morning.

Dear Sylvia,

Thank you for your email regarding the status of the
NG Energy contract. I'm pleased to let you know
that the contract is now complete and ready for an
attorney review. [...]

Best regards,

<Your Name Here>

Write an email to Sylvia informing her that the NG contract s
complete and ready for legal review, and that it should be available
by tomorrow morning.

Email guidelines:

e Start with talking about NG Energy Contract
e Don’t use an introductory name

e Use direct tone, concise sentences

The NG Energy contractis finished. | need a lawyer to
review it. It will be ready in the morning.
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How can we efficiently personalize language model outputs?

"Write an email to

Elizabeth <...>"

"Write an email to

Elizabeth <...>"

Naive Finetuning

Inference - Naive Finetuning

"Hey Elizabeth, <...>" Hey Eliza,

1. Elizabeth is a
close friend, use
her nickname -
Liza.

2. Limit to 2-3
sentences.

NL Rules 3. No signature
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