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Abstract

We explore the capability of inpainting technology, lever-
aging Stable Diffusion models, enhanced by the precision of
textual prompts generated via language models fine-tuned
with parameter-efficient techniques. The study introduces
a method that employs CLIP to provide textual descrip-
tions of images, harnessing these as a basis for generat-
ing high-quality and relevant prompts for diffusion-based
models without the need for expert user input. Utilizing
the advanced scene understanding of GPT-4-V, our sys-
tem identifies potential object placement regions within an
image, guiding the optimal application of inpainted im-
ages. To ensure realistic and diverse outputs, we gener-
ate multiple image potentials and apply quantitative mea-
sures such as Frechet Inception Distance (FID) for evaluat-
ing image realism, subsequently filtering to refine the image
set. The methodology includes the curation of a Low-Rank
Adaptation-driven language model training dataset, train-
ing language models to predict human intent in designing
prompts, and advanced prompting techniques to overcome
refusal rates in vision model interactions. Results demon-
strate the efficacy of our system in generating realistic and
contextually appropriate images for interior design appli-
cations. This research has the potential to significantly ad-
vance the automation of interior design and generate new
directions for the combination of language and vision mod-
els in computer vision tasks.

1. Introduction and Related Works
Interior design, a significant sector fulfilling the human

desire for comfortable living spaces, has witnessed various
attempts to integrate Computer Vision to streamline its pro-
cesses [2, 10, 22]. However, the intricacy of indoor envi-
ronments and object placement has limited the automation
of this field, primarily due to the challenges in generating
effective masks.
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Recent developments in inpainting, particularly with
Stable Diffusion base models [16] and techniques like
SmartBrush [20], have demonstrated remarkable capabili-
ties in embedding new images and foreign objects into ex-
isting ones. These advancements, albeit reliant on precise
textual descriptions and accurate masking, offer promising
avenues for interior design applications.

Crucial to the effectiveness of diffusion-based models
is the quality of input textual descriptions. Many users,
however, lack the expertise to craft effective prompts or
articulate their desired elements in an image. To bridge
this gap, we utilize CLIP descriptions of images and orig-
inal intended prompts. Leveraging a wealth of publicly
available, high-quality stable diffusion prompts, we fine-
tune a language model using parameter-efficient techniques
like QLora [6]. Subsequently, we employ batch decoding
on a Large Language Model to efficiently generate diverse
prompts [14].

GPT-4-V [13], renowned for its scene understanding ca-
pabilities, plays a pivotal role in our methodology. When
provided with images, it discerns potential locations for ob-
ject placement, as substantiated by numerous technical re-
ports and preliminary findings (refer to A). However, due to
their unreliable efficacy and high rate of refusal, we employ
the use of various, specialized prompting techniques, such
as EmotionPrompt [11], Chain Of Thought Prompting [19]
and Reasoning with Code [3]

These discerned masks, combined with those derived
from contour maps, guide the placement of inpainted im-
ages.

Utilizing a range of generated prompts and masks, we
create a wide array of potential output images through test-
time computation. The realism of these images is quanti-
tatively evaluated using metrics like the Frechet Inception
Distance (FID) [7]. This approach enables us to filter out
less realistic images, thereby refining our image set. Con-
sequently, our method presents an intuitive user experience,
negating the need for in-depth understanding of masking,
denoising, inpainting, and sampling processes in the realm
of interior design, allowing us to effectively design interior



Figure 1. Caption

spaces.

2. Methods
2.1. Base Prompt Generation

Our approach develops multi modal pipeline to effec-
tively insert objects and images into scenes. We first utilize
an open source implementation of OpenAI’s CLIP [15], and
Salesforce BLIP [12], to provide a descriptive, textual rep-
resentation of the base image. Pillow [4] is used to load and
pre-process the image. We use the OpenAI VIT-LARGE-
PATCH-14 model as our primary CLIP model.

2.2. Diffusion Model Input Prompt Generation

2.2.1 LoRA Dataset Curation

To facilitate the training of a low-rank adaptation [8] for lan-
guage models, our methodology emphasizes the creation of
a high-quality dataset through the generation of synthetic
data. This approach, grounded in successful practices for
training various large language models [18, 21], offers a
cost-effective and less labor-intensive alternative to tradi-
tional data sourcing and validation methods. While ac-
knowledging the potential compromise in data variety, this
trade-off is deemed acceptable for our specific use cases.

Our process begins with the meticulous selection of ref-

erence images I and their associated generation parame-
ters and prompts P , sourced from CivitAI [1]. This selec-
tion forms the cornerstone of our two-pronged approach.
The initial phase involves conducting a human preference
analysis, aimed at deducing potential human intentions x
from the given diffusion model input prompts p ∈ P .
This deduction, represented as a function g : P → X ,
is pivotal for establishing a baseline that language mod-
els can align with, thereby shaping our initial dataset D =
(xi, pi)|xi ∈ X, yi ∈ P .

In the subsequent phase, the MISTRAL-7B-INSTRUCT-
V0.1 model [9] is utilized to extrapolate these human-
derived hypotheses into specific intention-input pairs x, p,
expanding the breadth of our dataset. Once a substantial
corpus of such pairs is compiled, we leverage the instruct-
finetuned Capybara-34B model [5] for synthetic aug-
mentation of our dataset. This augmentation is instrumental
in enriching the training material, thus enabling our prompt
generator to effectively learn and generalize from a diverse
array of proven output prompts. Consequently, this strat-
egy equips our model to facilitate high-quality Low Rank
Adaptation training, optimizing its performance in generat-
ing relevant and varied prompts.



2.2.2 Lora Training

The cornerstone of our approach in enhancing the capa-
bilities of language models for prompt generation lies in
the implementation of Low-Rank Adaptation (LoRA) train-
ing. LoRA, a parameter-efficient training methodology, al-
lows us to fine-tune pre-trained language models without
the need to overhaul the entire model structure [8]. This ap-
proach is especially beneficial in the context of generating
precise and contextually relevant prompts for Stable Dif-
fusion models, as it ensures a high degree of adaptability
while maintaining computational efficiency.

Our LoRA training process begins with the selection of
a suitable pre-trained language model. For our purposes,
we utilize the Capybara-34B model, a variant known for
its robustness and versatility in handling diverse language
tasks [5]. The model is then subjected to a fine-tuning reg-
imen using the curated dataset D, which comprises a rich
assortment of human-generated prompts and their corre-
sponding intentions. This dataset acts as the foundation
for training the model to discern and replicate human-like
prompt generation.

In the LoRA training phase, we introduce low-rank ma-
trices to the transformer layers of the Capybara-34B
model. These matrices act as trainable parameters, allowing
us to modify the model’s attention and feed-forward net-
works subtly. This modification aims to imbue the model
with enhanced capability to interpret and generate prompts
that are aligned with human intent and stylistic preferences,
a key requirement for effective inpainting in interior design
contexts.

A crucial aspect of our LoRA training involves balanc-
ing the retention of the original model’s knowledge with
the incorporation of new, task-specific insights. To achieve
this, we employ a conservative learning rate and a focused
training duration, ensuring that the model’s fundamental
language understanding capabilities remain intact while it
acquires specialized skills in prompt generation.

Upon completion of the training, the enhanced language
model demonstrates a marked improvement in generating
prompts that are not only syntactically and semantically co-
herent but also aligned with the specific requirements of in-
terior design inpainting tasks. These prompts, when fed into
Stable Diffusion models, result in high-quality, contextually
appropriate image outputs that significantly enhance the au-
tomation process in interior design applications.

The success of our LoRA training approach is evidenced
by the reduced refusal rates and increased efficacy of gen-
erated prompts, as evaluated in subsequent stages of our
methodology. This advancement establishes a new bench-
mark in the integration of language and vision models,
paving the way for more sophisticated and user-friendly ap-
plications in the realm of automated interior design.

2.3. Mask Determination

In this study, we employ the GPT-4-V API [13], recog-
nized as the state-of-the-art (SoTA) vision model, for the
critical task of mask determination in image processing.
This choice is underpinned by the model’s advanced ca-
pabilities in accurately identifying optimal insertion points
within an image, based on empirical preliminary tests, and
strong reasoning capabilities. To align our methodology
with the constraints of computational resources and bud-
getary limitations, we introduce a dynamic scaling factor,
denoted as λ. This factor is instrumental in resizing any
given image, I, to a fixed dimension of 512 x 512 pixels,
ensuring uniformity and computational efficiency. The scal-
ing factor λ is defined mathematically as:

λ =
512

max(w, h)
(1)

Here, w and h represent the width and height of the im-
age, respectively. The scaled image, λI, is subsequently
processed through a mask determination system, which op-
erates based on a specifically crafted prompt P . This sys-
tem outputs a set of coordinates that define a square region
within the image. The output is in the form of two diag-
onal corner points, denoted as [(x0, y0), (x1, y1)]. These
points are then extrapolated to ascertain their validity and
relevance to the image context. Following this, a reverse
scaling is applied to each coordinate using the inverse of
λ, thereby mapping them accurately onto the original di-
mensions of the image. This methodology ensures precision
in mask determination while adhering to our computational
and budgetary constraints.

We provide the system prompt, utilized to receive co-
ordinates from our vision model in Appendix C. Due to
safety limitations by OpenAI, this turns out to be a chal-
lenging task with a high request refusal rate (RRR), and
therefore, we exploit various methodologies discovered in
the field of Natural Language Processing to generate reli-
able and consistent results. We utilize HTML tags, in or-
der to harness the reasoning with code capabilities of lan-
guage models [3]. We also use EmotionPrompt [11] as
well as Reasoning based Chain-of-thought prompting in-
troduced in [19] to increase our rates of achieving factual,
interpretable and reproducible results.

2.4. Realism Determination

In the domain of computer vision, particularly in the
realm of image generation, the Frechet Inception Distance
(FID) [7] score stands as a benchmark for assessing the
quality and realism of generated images. This metric, de-
rived from comparing the distribution of generated images
against a corpus of real images, is instrumental in gauging
the perceptual similarity between these two sets.



The FID score’s significance lies in its ability to capture
the nuanced differences in image quality that are often im-
perceptible to the human eye. This is particularly critical
in our study, where the goal is to seamlessly integrate in-
painted objects into existing indoor scenes, maintaining a
high degree of realism. A lower FID score indicates a closer
resemblance to real-world images, suggesting that the syn-
thetic images are nearly indistinguishable from authentic
photographs. This level of realism is essential in interior
design applications, where the visual appeal and authentic-
ity of the design directly influence the user’s experience and
satisfaction.

The Fréchet Inception Distance (FID) score is calculated
as follows:

FID = ∥µr − µg∥2 + Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)

(2)

where:

• µr and µg are the mean feature vectors of the real and
generated images, respectively,

• Σr and Σg are the covariance matrices of the real and
generated images, respectively,

• Tr denotes the trace of a matrix,

• ∥ · ∥ denotes the Euclidean norm.

3. Discussion

In the context of our study, which harnesses Stable Dif-
fusion XL for advanced image inpainting in interior design,
we have achieved a FID score of 3.062 on a dataset of 2000
bedroom scenes. The score is a pivotal metric, underscor-
ing the success of our approach in producing high-quality,
realistic images for interior design. This achievement re-
flects the potential of our methodology in advancing the au-
tomation of interior design, offering promising avenues for
future exploration and application in this field.

In light of our encouraging outcomes achieved through
the SpaceKraft system, future research will focus on the
refinement of model interactions, aiming to minimize re-
fusal rates further and enhance the model’s ability to un-
derstand and execute complex instructions with greater pre-
cision. Additionally, we plan to explore the promising av-
enue in the personalization of design outputs by incorporat-
ing user behavior analysis, which could lead to more intu-
itive and user-centric interior design solutions. By continu-
ing to leverage the rapid advancements, we aim to not only
streamline the creative process but also democratize interior
design, making sophisticated and customized design acces-
sible to a broader audience.

4. Group Contributions
All members of the group contributed equally.

• Amitabh Mahapatra: Realism Determination, Mask
Determination

• Sumuk Shashidhar: Paper Writing, Low Rank Adap-
tation

Challenges: A CVPR project [17] had a lot of last minute
changes, till the supplementary deadline (27 November).
Therefore, couldn’t achieve all of the points listed in the
proposal.
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Figure 3. Three examples of the pipeline in action. Left column denotes original images and the right column denotes the generated
images.



Figure 4. Sample Image
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A. Example GPT-4-V Output
Reasoning: The image shows a bedroom
with a bed in the center, a nightstand

Figure 5. Indoor Bedroom Picture

with a lamp to the left of the bed, a
chair to the right, and various decorative
items on the wall above and to the left of
the bed. There is a potted plant on the
right side of the bed that is sitting
on a small stool or table. The floor
space in front of the bed and the
area on the right side near the chair
appear to be open. Additionally,
the top right corner of the image
near the window could also
accommodate a lamp.

[(300, 650), (850, 700), (1200, 300)]
# the center points of potential
# squares of empty area

B. Example Dataset
{

"input" : "I would like to see a
photograph of a designer bedroom
with a cinematic look",

"output" : "room, designer interior
for a bedroom, ((((cinematic look)))),
soothing tones, insane details,
intricate details, hyperdetailed,
low contrast,
soft cinematic light, dim colors,
exposure blend, hdr, faded, slate
gray atmosphere",

}

C. GPT-4-V Sytem Prompt
<task>

You are Coordinate GPT.
Given an image of a bedroom, your job
is to determine where a lamp could
theoretically be placed.
In order to facilitate this, you must
output an array of co-ordinates. To



assist you, you are given the scale
of the image on the X and Y axis.

</task>

<output_format>

Reasoning: (talk about what is in the image,
and where it is empty)

[(x0, y0), (x1, y1), (x2, y2)] # the center
# points of a potential squares of empty area

</output_format>

Adhere strictly to the output
format that I have given you.

<final_tips>

Stay focused and dedicated to your goals.
Your consistent efforts will lead to
outstanding achievements. This is very
important to my career, and I would be
super happy, and super satisfied with you,
if you could help me. Be confident,
while helping, and be extremely through,
and detailed.

</final_tips>

DO NOT WRITE PYTHON CODE TO SOLVE THIS PROBLEM.
SOLVE IT JUST WITH TEXT AND PLAINGPT
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