
GPTFuzzer
Jiahao Yu, Xingwei Lin, Zheng Yu, Xinyu Xing
ANT Group

Sumuk Shashidhar

University of Illinois, Urbana Champaign June 22, 2024



Overview

1. Motivation

2. Prior Work

3. Method

4. Experimental Setup

5. Discussion

6. Conclusion

GPTFuzzer 2/46



Motivation

GPTFuzzer



Motivation
• Language models have become increasingly powerful and widely adopted
• However, concerns have been raised about their safety and reliability

GPTFuzzer 3/46



Models Don’t KnowWhat They’re Saying!

GPTFuzzer 4/46



Limitations of Manual Jailbreak Prompt Design
• Existing research relies heavily on manually crafted prompts
• Manual prompt design has several inherent limitations:

• Scalability: Not practical for the increasing number of LLMs and their versions
• Labor-Intensity: Requires deep expertise and significant time investment
• Coverage: May miss certain vulnerabilities due to human oversight or biases
• Adaptability: Struggles to keep pace with the rapid evolution of LLMs

GPTFuzzer 5/46



GPTFuzzer
• Black-box jailbreak fuzzing framework for automated prompt generation
• Inspired by AFL fuzzing
• Three pivotal components:

• Seed selection strategy
• Mutate operators
• Judgment model

• Iterative process: Mutates human-crafted prompts, evaluates success, and
updates seed pool

GPTFuzzer 6/46



Main Research Questions

GPTFuzzer 7/46



Prior Work

GPTFuzzer



LLM Architecture and Training
• Auto-regressive, decoder-only transformer variants

• Predict subsequent words based on preceding context
• Iterative process: Predict wn+1 based on w1,w2, ...,wn

• Training: Maximize likelihood of succeeding word based on predecessors
• Self-supervised training with diverse text corpora
• Reinforcement Learning from Human Feedback (RLHF) for better alignment with

human values

GPTFuzzer 8/46



Fuzzing
• Software testing technique: Provide random or pseudo-random inputs to

uncover bugs and vulnerabilities
• Three main types:

• Black-box fuzzing: No knowledge of program’s internal mechanics
• White-box fuzzing: Deep analysis of source code to pinpoint vulnerabilities
• Grey-box fuzzing: Balance between black-box and white-box, partial knowledge of

internal structure

• GPTFuzzer aligns with black-box fuzzing paradigm

GPTFuzzer 9/46



Standard Fuzzing Process
• Seed Initialization: Initialize the seed (initial input to the program)
• Seed Selection: Select a seed from the accumulated seed pool

• Random or guided by specific heuristics
• Mutation: Mutate the selected seed to generate a new input

• Random mutations or sophisticated strategies (e.g., bandit search algorithm)
• Execution: Execute the mutated input on the program

• If the program crashes or encounters a new path, add the input to the seed pool

GPTFuzzer 10/46



Method

GPTFuzzer



Overview

GPTFuzzer 11/46



Motivating Example
• Carefully crafted jailbreak template successfully elicits unauthorized outputs

from gpt-3.5-turbo-0301
• The same template becomes ineffective when tested on the updated model,

gpt-3.5-turbo-0631
• Update brings improvements to the model’s refusal behavior
• New model is more robust to jailbreak attacks

• Fine-tuning for safety responses against adversarial templates can bolster an
LLM’s robustness

GPTFuzzer 12/46



RLHF Finetuning

GPTFuzzer 13/46



Is an LLM secure against a jailbreak template after
fine-tuning?
• Modifying the original jailbreak template by appending additional content at the

beginning
• The modified prompt still manages to elicit unauthorized outputs from both the

updated and older versions of the model
• This example exposes a vulnerability in current LLMs

GPTFuzzer 14/46



Broken Jailbreak

GPTFuzzer 15/46



Need for Automated Red-Teaming of LLMs
• Human-crafted jailbreak templates are effective but labor-intensive and limited

in number
• Fine-tuning makes LLMs more resilient to manually crafted templates, but they

remain vulnerable to variations of these templates
• Urgent need for automated tools in the generation of jailbreak templates

• Explore a broader and more nuanced space of potential vulnerabilities
• Make red-teaming efforts more comprehensive and effective

GPTFuzzer 16/46



The GAN Problem

GPTFuzzer 17/46



Judgment Model
• Judgment model assigns rewards based on these factors:

• Refusal to answer: r1 = −1
• Answer generation: r2 = 1
• No refusal or answer: r3 = 0

• Final reward: r = max(r1, r2, r3)
• Has

• Full refusal
• Partial Refusal
• Partial Compliance
• Full Compliance

GPTFuzzer 18/46



Ensemble of Multiple LLMs
• Using a single LLM for judgment might not be enough
• Different LLMs have different strengths and weaknesses
• GPTFUZZER uses an ensemble of multiple LLMs for judgment!

• Leverages the diversity of LLMs
• Majority voting for more reliable judgment

• Ensemble approach improves the robustness of the judgment model

GPTFuzzer 19/46



MCTS-Explore Seed Selection Strategy
• Uses Monte Carlo Tree Search (MCTS) algorithm for seed selection
• Balances efficiency and diversity compared to baseline strategies like UCB
• Key modifications to standard MCTS:

• Probability p to select non-leaf nodes for exploration
• Reward penalty α and minimal reward β to prevent over-focus on lineages

GPTFuzzer 20/46



MCTS-Explore Algorithm
Initialize tree with initial seeds For each iteration:

1. Traverse tree from root, selecting successor with highest UCT score

2. With probability p, return current path (allows non-leaf exploration)

3. Select leaf node as seed for mutation and execution
4. Update rewards along path:

• reward← max(reward− α ∗ len(path), β)
• Prevents over-focus on lineages with reward penalty α
• Maintains minimal reward β for successful jailbreaks

GPTFuzzer 21/46



UCT Score Calculation
For each node n:

UCT(n) =
r+ c

√
2 lnN
n+1

child visits+ 1

where:
• r is average reward
• N is total iterations
• n is selection count
• c balances exploitation vs exploration

GPTFuzzer 22/46



Mutation Strategies
• Traditional binary/structured data mutation strategies not suitable for natural

language
• Leverage LLMs for mutation to generate coherent, contextually relevant

variations
• Stochastic sampling of LLM outputs enhances diversity of mutations and seed

pool
• Five specialized mutation operators introduced:

• Generate
• Crossover
• Expand
• Shorten
• Rephrase

GPTFuzzer 23/46



Mutation Prompts

GPTFuzzer 24/46



Mutation Prompts

GPTFuzzer 25/46



Mutation Examples

GPTFuzzer 26/46



Mutation Prompts

GPTFuzzer 27/46



Experimental Setup

GPTFuzzer



Dataset Construction
• 100 questions collected from two open datasets

• Cover wide range of prohibited scenarios
• e.g., illegal/immoral activities, discrimination, toxic content

• Datasets chosen for real-world relevance
• Manually written by authors or crowdsourced

• 77 suitable initial jailbreak templates selected from
• Unsuitable templates removed per Section 3.2 criteria

• Detailed dataset and template description in Appendix A

GPTFuzzer 28/46



Mutate Model
• ChatGPT used as mutate model for balance of performance and cost
• Temperature set to 1.0 for diverse mutations via sampling
• Sampling crucial for enhancing diversity of generated mutations

GPTFuzzer 29/46



Metrics
• Attack Success Rate (ASR) - primary metric

• Top-1 ASR: Success rate of most effective jailbreak template
• Top-5 ASR: Success rate of top 5 templates applied sequentially

• Distinguishing Top-1 and Top-5 ASR provides broader view of cumulative impact
of high-performing templates

GPTFuzzer 30/46



Initial Seed Assessment
• 77 human-written jailbreak templates tested on 100 questions against ChatGPT,

Llama-2-7B-Chat, Vicuna-7B
• Surprising effectiveness against Vicuna-7B and ChatGPT (99% Top-1 ASR, 100%

Top-5 ASR)
• Llama-2-7B-Chat shows strong robustness (20% Top-1 ASR, 47% Top-5 ASR)
• Results demonstrate potency of human-written templates and motivate their

use as initial seeds
• Highly questionable result interpretation here!

GPTFuzzer 31/46



GPT/Llama/Vicuna Results

GPTFuzzer 32/46



GPT/Llama/Vicuna Results

GPTFuzzer 33/46



Our prior work

Showcases how GPT and Vicuna are very aligned!

GPTFuzzer 34/46



Single-model Jailbreak
• Single-question attack: Focused on 46 Llama-2-7B-Chat resistant questions

• 500 query limit per question, various initial seed strategies tested
• Top-5 seeds jailbreak all 46 questions in<23 queries on average

• Multi-question attack: 100 questions, 50,000 total query budget
• All seed strategy yields 60% Top-1 ASR, 87% Top-5 ASR
• Substantial improvement over human-scripted templates

• Invalid seeds still effective! Fuzzing amplifies their potency

GPTFuzzer 35/46



Judgment Model
• Local finetuned masked language model used as judgment model
• Finetuned on 7700 ChatGPT responses (77 jailbreak prompts× 100 questions)
• Responses manually labeled per Section 3.5 criteria
• 80% train, 20% validation split (no overlap in questions)
• RoBERTa-large finetuned for 15 epochs, batch size 16, learning rate 1e-5
• Benchmarked against Rule Match, Moderation, ChatGPT, GPT-4
• RoBERTa outperforms baselines in accuracy, TPR, FPR, and time efficiency

GPTFuzzer 36/46



Ablation Study: Seed Selection
• Evaluated impact of seed selection strategies on Llama-2-chat-7B
• Strategies: Random, Round-robin, UCB, MCTS-Explore (GPTFuzzer)
• MCTS-Explore outperforms alternatives

• Balances exploration and exploitation
• Explores more seeds than UCB, finds interesting branches
• Allocates resources to exploit promising branches

GPTFuzzer 37/46



Ablation Study: Mutators
• Evaluated impact of individual mutators on GPTFuzzer performance
• Using single mutator greatly reduces fuzzing performance
• Necessity of using all mutators to enhance performance
• Crossover operator performs best among single mutator variants

• Generates new templates by combining existing ones
• More likely to bypass LLMs’ safety measures

GPTFuzzer 38/46



Ablations

GPTFuzzer 39/46



Transfer Attack
• Evaluating template transferability across unseen questions and models
• 80,000 queries on ChatGPT, Llama-2-7B-Chat, Vicuna-7B
• Top-5 templates tested on 100 new questions and various models
• GPTFuzzer outperforms all baselines across all LLMs!

• 100% Top-5 ASR for Vicuna-7B, Vicuna-13B, Baichuan-13B
• >90% for ChatGLM2-6B,>80
• 100% for ChatGPT,>96
• >60% for Bard and GPT-4

• Demonstrates universality and effectiveness of GPTFuzzer templates

GPTFuzzer 40/46



ASR Results

GPTFuzzer 41/46



Discussion

GPTFuzzer



Limitations of GPTFuzzer
• Relies on human-written jailbreak templates as initial seeds

• Limited innovation in generated templates
• Challenging to unveil novel attack patterns

• Does not transform questions, enabling potential keyword matching rejection
• Judgment model occasionally misclassifies hard-to-determine instances
• Requires many queries to the target model, risking being blocked

GPTFuzzer 42/46



Mitigating Jailbreak Attacks
• Naive approach: Blacklist likely jailbreak templates

• Hard to maintain comprehensive blacklist
• May filter out legitimate templates

• Alternative: Fine-tune against identified jailbreak templates
• Resource-intensive
• Difficult to cover all possible templates, especially undiscovered ones

• Mitigating jailbreak attacks effectively remains a significant challenge!
• Requires continued research efforts
• Need for robust, sustainable solutions

GPTFuzzer 43/46



GPT gets better over time

GPTFuzzer 44/46



Conclusion

GPTFuzzer



Contributions
• Introduction of GPTFuzzer: A novel black-box jailbreak fuzzing framework
• Design and validation of three essential components:

• Seed selection strategy
• Mutate operators
• Judgment model

• Extensive evaluation across commercial and open-source LLMs
• Impressive attack success rates, even with failed human-written prompts
• Effective transfer attacks against unseen LLMs

GPTFuzzer 45/46



Thank you

Sumuk Shashidhar

University of Illinois, Urbana Champaign June 22, 2024


	Motivation
	Prior Work
	Method
	Experimental Setup
	Discussion
	Conclusion

