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Motivation
• Language models have become increasingly powerful and widely adopted
• However, concerns have been raised about their safety and reliability
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Models Don’t KnowWhat They’re Saying!
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Limitations of Manual Jailbreak Prompt Design
• Existing research relies heavily on manually crafted prompts
• Manual prompt design has several inherent limitations:

• Scalability: Not practical for the increasing number of LLMs and their versions
• Labor-Intensity: Requires deep expertise and significant time investment
• Coverage: May miss certain vulnerabilities due to human oversight or biases
• Adaptability: Struggles to keep pace with the rapid evolution of LLMs
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GPTFuzzer
• Black-box jailbreak fuzzing framework for automated prompt generation
• Inspired by AFL fuzzing
• Three pivotal components:

• Seed selection strategy
• Mutate operators
• Judgment model

• Iterative process: Mutates human-crafted prompts, evaluates success, and
updates seed pool
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Main Research Questions
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LLM Architecture and Training
• Auto-regressive, decoder-only transformer variants

• Predict subsequent words based on preceding context
• Iterative process: Predict wn+1 based on w1,w2, ...,wn

• Training: Maximize likelihood of succeeding word based on predecessors
• Self-supervised training with diverse text corpora
• Reinforcement Learning from Human Feedback (RLHF) for better alignment with

human values
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Fuzzing
• Software testing technique: Provide random or pseudo-random inputs to

uncover bugs and vulnerabilities
• Three main types:

• Black-box fuzzing: No knowledge of program’s internal mechanics
• White-box fuzzing: Deep analysis of source code to pinpoint vulnerabilities
• Grey-box fuzzing: Balance between black-box and white-box, partial knowledge of

internal structure

• GPTFuzzer aligns with black-box fuzzing paradigm
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Standard Fuzzing Process
• Seed Initialization: Initialize the seed (initial input to the program)
• Seed Selection: Select a seed from the accumulated seed pool

• Random or guided by specific heuristics
• Mutation: Mutate the selected seed to generate a new input

• Random mutations or sophisticated strategies (e.g., bandit search algorithm)
• Execution: Execute the mutated input on the program

• If the program crashes or encounters a new path, add the input to the seed pool
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Motivating Example
• Carefully crafted jailbreak template successfully elicits unauthorized outputs

from gpt-3.5-turbo-0301
• The same template becomes ineffective when tested on the updated model,

gpt-3.5-turbo-0631
• Update brings improvements to the model’s refusal behavior
• New model is more robust to jailbreak attacks

• Fine-tuning for safety responses against adversarial templates can bolster an
LLM’s robustness
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RLHF Finetuning
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Is an LLM secure against a jailbreak template after
fine-tuning?
• Modifying the original jailbreak template by appending additional content at the

beginning
• The modified prompt still manages to elicit unauthorized outputs from both the

updated and older versions of the model
• This example exposes a vulnerability in current LLMs
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Broken Jailbreak
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Need for Automated Red-Teaming of LLMs
• Human-crafted jailbreak templates are effective but labor-intensive and limited

in number
• Fine-tuning makes LLMs more resilient to manually crafted templates, but they

remain vulnerable to variations of these templates
• Urgent need for automated tools in the generation of jailbreak templates

• Explore a broader and more nuanced space of potential vulnerabilities
• Make red-teaming efforts more comprehensive and effective
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The GAN Problem
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Judgment Model
• Judgment model assigns rewards based on these factors:

• Refusal to answer: r1 = −1
• Answer generation: r2 = 1
• No refusal or answer: r3 = 0

• Final reward: r = max(r1, r2, r3)
• Has

• Full refusal
• Partial Refusal
• Partial Compliance
• Full Compliance
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Ensemble of Multiple LLMs
• Using a single LLM for judgment might not be enough
• Different LLMs have different strengths and weaknesses
• GPTFUZZER uses an ensemble of multiple LLMs for judgment!

• Leverages the diversity of LLMs
• Majority voting for more reliable judgment

• Ensemble approach improves the robustness of the judgment model
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MCTS-Explore Seed Selection Strategy
• Uses Monte Carlo Tree Search (MCTS) algorithm for seed selection
• Balances efficiency and diversity compared to baseline strategies like UCB
• Key modifications to standard MCTS:

• Probability p to select non-leaf nodes for exploration
• Reward penalty α and minimal reward β to prevent over-focus on lineages
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MCTS-Explore Algorithm
Initialize tree with initial seeds For each iteration:

1. Traverse tree from root, selecting successor with highest UCT score

2. With probability p, return current path (allows non-leaf exploration)

3. Select leaf node as seed for mutation and execution
4. Update rewards along path:

• reward← max(reward− α ∗ len(path), β)
• Prevents over-focus on lineages with reward penalty α
• Maintains minimal reward β for successful jailbreaks
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UCT Score Calculation
For each node n:

UCT(n) =
r+ c

√
2 lnN
n+1

child visits+ 1

where:
• r is average reward
• N is total iterations
• n is selection count
• c balances exploitation vs exploration
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Mutation Strategies
• Traditional binary/structured data mutation strategies not suitable for natural

language
• Leverage LLMs for mutation to generate coherent, contextually relevant

variations
• Stochastic sampling of LLM outputs enhances diversity of mutations and seed

pool
• Five specialized mutation operators introduced:

• Generate
• Crossover
• Expand
• Shorten
• Rephrase
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Mutation Prompts
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Mutation Prompts
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Mutation Examples
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Mutation Prompts
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Dataset Construction
• 100 questions collected from two open datasets

• Cover wide range of prohibited scenarios
• e.g., illegal/immoral activities, discrimination, toxic content

• Datasets chosen for real-world relevance
• Manually written by authors or crowdsourced

• 77 suitable initial jailbreak templates selected from
• Unsuitable templates removed per Section 3.2 criteria

• Detailed dataset and template description in Appendix A
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Mutate Model
• ChatGPT used as mutate model for balance of performance and cost
• Temperature set to 1.0 for diverse mutations via sampling
• Sampling crucial for enhancing diversity of generated mutations
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Metrics
• Attack Success Rate (ASR) - primary metric

• Top-1 ASR: Success rate of most effective jailbreak template
• Top-5 ASR: Success rate of top 5 templates applied sequentially

• Distinguishing Top-1 and Top-5 ASR provides broader view of cumulative impact
of high-performing templates
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Initial Seed Assessment
• 77 human-written jailbreak templates tested on 100 questions against ChatGPT,

Llama-2-7B-Chat, Vicuna-7B
• Surprising effectiveness against Vicuna-7B and ChatGPT (99% Top-1 ASR, 100%

Top-5 ASR)
• Llama-2-7B-Chat shows strong robustness (20% Top-1 ASR, 47% Top-5 ASR)
• Results demonstrate potency of human-written templates and motivate their

use as initial seeds
• Highly questionable result interpretation here!
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GPT/Llama/Vicuna Results
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GPT/Llama/Vicuna Results
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Our prior work

Showcases how GPT and Vicuna are very aligned!
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Single-model Jailbreak
• Single-question attack: Focused on 46 Llama-2-7B-Chat resistant questions

• 500 query limit per question, various initial seed strategies tested
• Top-5 seeds jailbreak all 46 questions in<23 queries on average

• Multi-question attack: 100 questions, 50,000 total query budget
• All seed strategy yields 60% Top-1 ASR, 87% Top-5 ASR
• Substantial improvement over human-scripted templates

• Invalid seeds still effective! Fuzzing amplifies their potency
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Judgment Model
• Local finetuned masked language model used as judgment model
• Finetuned on 7700 ChatGPT responses (77 jailbreak prompts× 100 questions)
• Responses manually labeled per Section 3.5 criteria
• 80% train, 20% validation split (no overlap in questions)
• RoBERTa-large finetuned for 15 epochs, batch size 16, learning rate 1e-5
• Benchmarked against Rule Match, Moderation, ChatGPT, GPT-4
• RoBERTa outperforms baselines in accuracy, TPR, FPR, and time efficiency
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Ablation Study: Seed Selection
• Evaluated impact of seed selection strategies on Llama-2-chat-7B
• Strategies: Random, Round-robin, UCB, MCTS-Explore (GPTFuzzer)
• MCTS-Explore outperforms alternatives

• Balances exploration and exploitation
• Explores more seeds than UCB, finds interesting branches
• Allocates resources to exploit promising branches
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Ablation Study: Mutators
• Evaluated impact of individual mutators on GPTFuzzer performance
• Using single mutator greatly reduces fuzzing performance
• Necessity of using all mutators to enhance performance
• Crossover operator performs best among single mutator variants

• Generates new templates by combining existing ones
• More likely to bypass LLMs’ safety measures
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Ablations
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Transfer Attack
• Evaluating template transferability across unseen questions and models
• 80,000 queries on ChatGPT, Llama-2-7B-Chat, Vicuna-7B
• Top-5 templates tested on 100 new questions and various models
• GPTFuzzer outperforms all baselines across all LLMs!

• 100% Top-5 ASR for Vicuna-7B, Vicuna-13B, Baichuan-13B
• >90% for ChatGLM2-6B,>80
• 100% for ChatGPT,>96
• >60% for Bard and GPT-4

• Demonstrates universality and effectiveness of GPTFuzzer templates

GPTFuzzer 40/46



ASR Results
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Limitations of GPTFuzzer
• Relies on human-written jailbreak templates as initial seeds

• Limited innovation in generated templates
• Challenging to unveil novel attack patterns

• Does not transform questions, enabling potential keyword matching rejection
• Judgment model occasionally misclassifies hard-to-determine instances
• Requires many queries to the target model, risking being blocked
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Mitigating Jailbreak Attacks
• Naive approach: Blacklist likely jailbreak templates

• Hard to maintain comprehensive blacklist
• May filter out legitimate templates

• Alternative: Fine-tune against identified jailbreak templates
• Resource-intensive
• Difficult to cover all possible templates, especially undiscovered ones

• Mitigating jailbreak attacks effectively remains a significant challenge!
• Requires continued research efforts
• Need for robust, sustainable solutions
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GPT gets better over time
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Contributions
• Introduction of GPTFuzzer: A novel black-box jailbreak fuzzing framework
• Design and validation of three essential components:

• Seed selection strategy
• Mutate operators
• Judgment model

• Extensive evaluation across commercial and open-source LLMs
• Impressive attack success rates, even with failed human-written prompts
• Effective transfer attacks against unseen LLMs
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